Privacy Risk Analysis of Large-scale Temporal Data Application to Electricity Consumption Data

Author: Antonin VOYEZ Supervisors: Élisa FROMONT Gildas AVOINE Tristan ALLARD Pierre CAUCHOIS

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Datasets analysis

The SubSum attack

The STATS attack

Conclusion

2/39

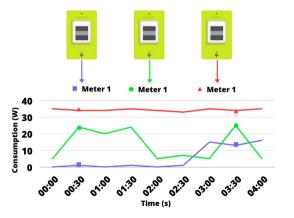
Smart metering

French smart meter: Linky

- Principal French electricity distribution operator.
- 33M Linky deployed.

Measurement:

- 1 measurement every **30 minutes**.
- Electricity consumed during the measurement period (Watt).



A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

э

Datasets analysis

The SubSum attack

The STATS attacl

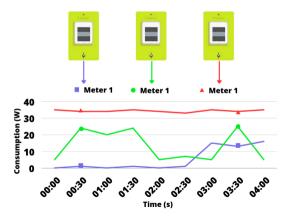
Conclusion

3/39

Time series:

Time series

- Sequence of timestamped data.
- Ordered by time.
- Time-series **length**: number of timestamps.
- Time-series: [1; 0; · · · ; 14; 15].



ж

Datasets analysis 00000000 The SubSum attack

The STATS attack

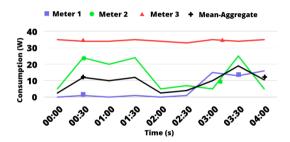
Conclusion

4/39

Open data¹

Publication²:

- Sum / mean multiple measurements per timestamp.
- Aggregate size: number of series in the aggregate.
- Threshold: aggregate size \geq 5000.
- Additional information alongside the aggregate (contract type, ...).



²Code de l'Énergie, Loi pour une République Numérique

Antonin Voyez

Ph.D. defense - 2023-07-11

A D > A B > A B > A B >

э.

¹https://data.enedis.fr

Datasets analysis

The SubSum attack

The STATS attac

Conclusion

5/39

Data usage

- Energy transition:
 - Figure: Energy consumption in Rennes¹.
- Network management (prevision, dimensioning).
- Crossing with other data:
 - Energy data (gaz).
 - Socio-economics data (insee, data.gouv.fr).

¹https://observatoire.enedis.fr/

Antonin Voyez

Ph.D. defense - 2023-07-11

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Privacy issues

Datasets analysis

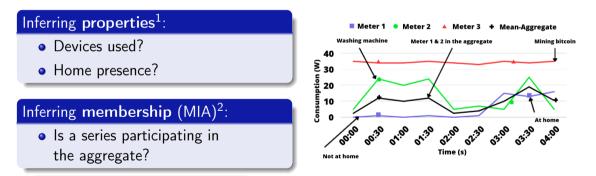
The SubSum attack

The STATS attack

Conclusion

6/39

Electricity consumption time series are **personal** data (GDPR).



¹Pascal A. Schirmer and Iosif Mporas. "Non-Intrusive Load Monitoring: A Review". In: IEEE Transactions on Smart Grid (2023).
 ²Hongsheng Hu et al. "Membership Inference Attacks on Machine Learning: A Survey". In: ACM-Computing Surveys (2022).

Datasets analysis

The SubSum attack

The STATS attack

Conclusion

7/39

= nac

Objectives of the thesis

- Understand the risks of publishing series and aggregates.
 - Is the current threshold (5000 series) safe?
 - What makes a series vulnerable?
- Propose attacks on existing open data aggregates.
 - Experimental approach.
 - Leveraging large-scale real-life electricity consumption data.

Ph.D. defense - 2023-07-11

イロト イボト イヨト イヨト

The SubSum attack

The STATS attack

Conclusion

8/39

= nac

Presentation outline

- Datasets analysis.
 - Exploring the datasets.
 - Uniqueness study: almost everyone is unique.
- The SubSum attack.
 - Able to infer the appartenance of each member of the aggregate.
- The STATS attack.
 - Find if a specific series participates in the aggregate.

Ph.D. defense - 2023-07-11

A D > A B > A B > A B >

Introduction 0000000	Datasets analysis •0000000	The SubSum attack	The STATS attack	Conclusion 00000	9/39

- Presents the datasets.
- Uniqueness study.
- Is it safe to publish pseudonymized series?
 - Pseudonymized: removing identifying information (name).

< □ > < ⑦ > < Ξ</p>Ph.D. defense - 2023-07-11

Datasets analysis

The SubSum attack

The STATS attack

Conclusion

10/39

Datasets

ENEDIS:

- Enedis's real French data.
- Sampling: 30 minutes.
- Duration: 2 years.
- Size:
 - 3M 30 minutes series.
 - 2M residential series.
- Profiles: Type of series (contract, consumption pattern).

ISSDA¹:

- Public Irish electricity consumption datasets.
- Sampling: 30 minutes.
- Duration: 1.5 years (2009 2010).
- Size: Approx. 4500 series.

Datasets analysis

The SubSum attack

The STATS attack

Conclusion

11/39

Datasets statistics

Measured values:

- Metering range: [0; 36000] W.
- Actual consumption: mostly below 1000 W.
- Peak at 0 W.

Seasonal patterns:

- More electricity consumption in the winter.
- More electricity consumption in the evening.
- The higher the consumption, the higher the dispersion.

(日)

э

The SubSum attack

The STATS attack

Conclusion

Uniqueness study

- Unique individuals are potentially identifiable.
 - Unique: an individual is unique if it is the only one possessing a set of values.
 - Sweeney's governor Welds re-identification².
 - Narayanan Netflix attack³.
- The proportion of unique individuals is used as a risk metric.
 - **Uniqueness:** proportion of unique individuals.
 - De Montjoye studies showed high uniqueness on large datasets with little adversarial knowledge⁴.

²Latanya Sweeney. "Simple demographics often identify people uniquely". In: Health (San Francisco) (2000).

³Arvind Narayanan and Vitaly Shmatikov. "Robust De-anonymization of Large Sparse Datasets". In: IEEE Symposium on Security and Privacy (SP). 2008.

⁴Yves-Alexandre De Montjoye et al. "Unique in the crowd: The privacy bounds of human mobility". clay Scientific reports (2013). 🗧 つく(?

The SubSum attack

The STATS attacl

Conclusion

13/39

Uniqueness study: methodology

- Uniqueness computed per time window:
 - t: starting timestamp.
 - k: number of consecutive timestamps.
- Dataset uniqueness: averaging the uniqueness per timestamp.

	Uniquene t = 1,			
	Timestamp 1	Timestamp 3		
Meter 1	0	1	0	
Meter 2	0	2	0	
Meter 3	2	1	0	
Meter 4	2	2	1	
Meter 5	0	1	2	

A D > A B > A B > A B >

э.

The SubSum attack

The STATS attacl

Conclusion

13/39

Uniqueness study: methodology

- Uniqueness computed per time window:
 - t: starting timestamp.
 - k: number of consecutive timestamps.
- Dataset uniqueness: averaging the uniqueness per timestamp.

		Uniqueness = 60% t = 2, k = 2		
	Timestamp 1	Timestamp 2	Timestamp 3	
Meter 1	0	1	0	
Meter 2	0	2	0	
Meter 3	2	1	0	
Meter 4	2	2	1	
Meter 5	0	1	2	

Ph.D. defense - 2023-07-11

A D > A B > A B > A B >

э.

Datasets analysis

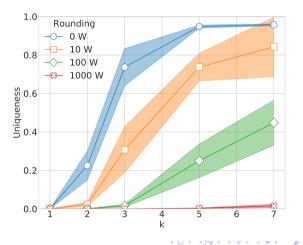
The SubSum attack

The STATS attac 0000000000 Conclusion

14/39

Uniqueness results

- Figure: average uniqueness (95% confidence interval) according to the number of consecutive points (k) and the rounding.
- **High uniqueness** considering only a few timestamps:
 - > 70% for k = 3 (1h30)
 - > 90% for k = 5 (2h30)



Datasets analysis

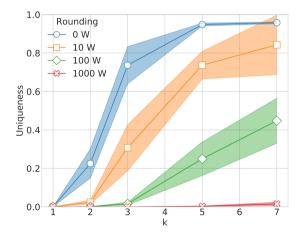
The SubSum attack

The STATS attac

Conclusion

Uniqueness results: rounding

- Reducing the measurement's precision (by rounding them) is not enough to protect the series.
 - Approx. 12k series are unique for k = 7 and with rounding to 1 kW.
 - Rounding to 1 kW renders the data useless: 80 % of measurements below 1kW.



The SubSum attack

The STATS attack

Conclusion

16/39

Uniqueness study: conclusion

- Enedis dataset: 3M half-hourly series.
- Is it safe to publish pseudonymized series?
 - High uniqueness with minimal adversarial knowledge.
 - Potentially vulnerable to uniqueness-based reidentification attacks.
 - It is unsafe to publish pseudonymized electricity consumption time series.
- Publication (under review): Nature Scientific Report: Smart Cities.

ж.

Introduction 0000000	Datasets analysis 00000000	The SubSum attack	The STATS attack	Conclusion 00000	17/39

The SubSum attack

- Attacking aggregates.
- Is it possible to find who is in an aggregate?

Ph.D. defense - 2023-07-11

< ∃→

э

Datasets analysis

The SubSum attack

The STATS attac

Conclusion

18/39

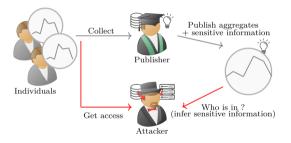
The SubSum attack: problem statement

Objective:

• Find all the series participating in the aggregate.

Attacker knowledge:

- Open data aggregate.
- Population larger than the series participating to aggregate.
- In real life: available to a major provider, disclosed by a data breach.



Ph.D. defense - 2023-07-11

イロト イヨト イヨト

3

Antonin Voyez

Datasets analysis

The SubSum attack

The STATS attacl

Conclusion

19/39

The SubSum attack

Constraints:

•
$$\forall t \in \mathcal{T}, A_t = \sum_{\forall i \in S} S_{i,t} \cdot X_i$$

• A_t : Aggregate value at the timestamp t. $S_{i,t}$: Consumption of the individual i at the timestamp t. X_i : Boolean telling whether or not the individual i is in the aggregate.

	Meter 1	Meter 2	Meter 3	Meter 4	Aggregate (size = 2)
Timestamp 1	10	0	15	10	25
Timestamp 2	5	5	7	10	12

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Datasets analysis

The SubSum attack

The STATS attacl

Conclusion

19/39

∃ \0 < \0</p>

The SubSum attack

Constraints:

•
$$\forall t \in \mathcal{T}, A_t = \sum_{\forall i \in S} S_{i,t} \cdot X_i$$

• A_t : Aggregate value at the timestamp t. $S_{i,t}$: Consumption of the individual i at the timestamp t. X_i : Boolean telling whether or not the individual i is in the aggregate.

	Meter 1	Meter 2	Meter 3	Meter 4	Aggregate (size = 2)
Timestamp 1	10	0	15	10	25
Timestamp 2	5	5	7	10	12

・ロッ ・雪 ・ ・ ヨ ・

Datasets analysis

The SubSum attack

The STATS attac

Conclusion

19/39

∃ \0 < \0</p>

The SubSum attack

Constraints:

•
$$\forall t \in \mathcal{T}, A_t = \sum_{\forall i \in S} S_{i,t} \cdot X_i$$

• A_t : Aggregate value at the timestamp t. $S_{i,t}$: Consumption of the individual i at the timestamp t. X_i : Boolean telling whether or not the individual i is in the aggregate.

	Meter 1	Meter 2	Meter 3	Meter 4	Aggregate (size = 2)
Timestamp 1	10	0	15	10	25
Timestamp 2	5	5	7	10	12

・ロッ ・雪 ・ ・ ヨ ・

Datasets analysis

The SubSum attack

The STATS attacl

Conclusion

19/39

∃ \0 < \0</p>

The SubSum attack

Constraints:

•
$$\forall t \in \mathcal{T}, A_t = \sum_{\forall i \in S} S_{i,t} \cdot X_i$$

• A_t : Aggregate value at the timestamp t. $S_{i,t}$: Consumption of the individual i at the timestamp t. X_i : Boolean telling whether or not the individual i is in the aggregate.

	Meter 1	Meter 2	Meter 3	Meter 4	Aggregate (size = 2)
Timestamp 1	10	0	15	10	25
Timestamp 2	5	5	7	10	12

・ロッ ・雪 ・ ・ ヨ ・

Datasets analysis

The SubSum attack

The STATS attacl

Conclusion

19/39

∃ \0 < \0</p>

The SubSum attack

Constraints:

•
$$\forall t \in \mathcal{T}, A_t = \sum_{\forall i \in S} S_{i,t} \cdot X_i$$

• A_t : Aggregate value at the timestamp t. $S_{i,t}$: Consumption of the individual i at the timestamp t. X_i : Boolean telling whether or not the individual i is in the aggregate.

	Meter 1	Meter 2	Meter 3	Meter 4	Aggregate (size = 2)
Timestamp 1	10	0	15	10	25
Timestamp 2	5	5	7	10	12

・ロッ ・雪 ・ ・ ヨ ・

Antonin Voyez

The SubSum attack

The STATS attack

Conclusion

20/39

Background on reconstruction attacks

Reconstruction attacks with linear reconstruction⁵

- Applying filters (queries) to an aggregated dataset.
- Build a set of constraints (equations) from the filters.
- Solving the constraints recreates the original dataset.

In practice:

• DIFFIX⁶, US census⁷

⁷Simson Garfinkel, John M. Abowd, and Christian Martindale. "Understanding Database Reconstruction Attacks on Public Data".
In: Communications of the ACM (2019).

Antonin Voyez

Ph.D. defense - 2023-07-11

⁵Irit Dinur and Kobbi Nissim. "Revealing Information While Preserving Privacy". In: ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2003.

⁶Aloni Cohen and Kobbi Nissim. "Linear Program Reconstruction in Practice". In: Journal of Privacy and Confidentiality (2020).

The SubSum attack

The STATS attack

Conclusion

21/39

The SubSum attack: experiments

Goal:

- What are the **conditions** required to make our attack work?
 - Number of series, aggregate size, series length.
- How long does it take?

Experimental setup:

- Success: Find all the existing solutions in the impaired time.
 - time budget: θ , maximum amount of solutions p
- Data: ISSDA.
- Solver: Gurobi.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Datasets analysis

The SubSum attack

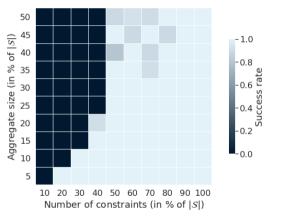
The STATS attac

Conclusion

22/39

Success rate

- Figure: success rate depending on the number of constraints and the aggregate size.
 - Figure parameters: |S| = 4500, θ = 24h, p = 100, 20 repetitions.
- The number of constraints required for a successful attack is of the same order as the aggregate size attacked.



< ロ > < 同 > < 回 > < 回 >

э

The SubSum attack

The STATS attack

Conclusion

Experimentation time depending on the time budget

- When the number of constraints is too low:
 - Attack fails due to the wall time.
- When the number of constraints is too high.
 - The attack should be a success but the time increases linearly with the number of constraints.

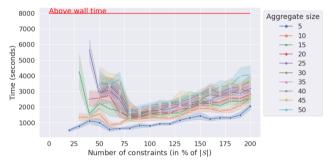


Figure: Experiment's time (s). Parameters: |S| = 2000, $\theta = 8000s$ (approx. 3h), p = 2, 20 repetitions. Computer: 2 cores and 8 Go RAM.

ъ

The SubSum attack

The STATS attack

Conclusion

24/39

The SubSum attack: conclusion

- Based on solving the subset-sum problem.
- Able to find all the series participating in an aggregate.
- Heavy requirements:
 - Large number of series, and timestamps.
 - Scaling issues: time consuming.
- **Publication:** International Conference on Security and Cryptography (SECRYPT) 2022.

イロト イボト イヨト イヨト

3

Introduction 0000000	Datasets analysis 00000000	The SubSum attack	The STATS attack ●000000000	Conclusion 00000	25/39

The STATS attack

- Reduce the background knowledge.
- Is it possible to find a single individual within an aggregate?
- STATS: Shadow Training for Aggregated Time Series.

Ph.D. defense - 2023-07-11

Datasets analysis

The SubSum attack

The STATS attack

Conclusion

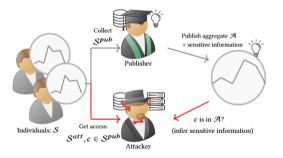
The STATS attack

Objective:

• Find **one** series participating in the aggregate.

Attacker knowledge:

- Open data aggregate.
- The targeted series (c).
- A set of series with similar statistical properties to the ones in the aggregates.
- In real life: public data (ISSDA), supplier data, data leaks.



26/39

Antonin Voyez

Ph.D. defense - 2023-07-11

A D > A B > A B > A B >

э.

The SubSum attack

The STATS attack

Conclusion

Background: Knock Knock who is there?¹

Pyrgelis's attack:

- Attacking location aggregate (number of individuals per place and time).
- Method: Shadow training².
- Results: small aggregates (\leq 100) are vulnerable.
 - Using simple classifiers (linear regression) and features (PCA).

Our contribution:

- Increase the attacked aggregate size.
- Adapt the Pyrgelis's attack to efficiently cope with time series.

¹Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro. "Knock Knock, Who's There? Membership Inference on Aggregate Location Data". In: *Network and Distributed System Security Symposium, NDSS*. 2018.

²Reza Shokri et al. "Membership Inference Attacks Against Machine Learning Models". In: IEEE Symposium on Security and Privacy (SP). 2017.

27/39

3

The SubSum attack

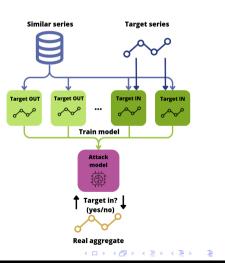
The STATS attack

Conclusion

28/39

Shadow training algorithm

- Build a set of fake aggregates (with and without the target).
- Train a classifier to detect the target in the aggregates.
- Test the classifier on test aggregates and evaluate using accuracy.
- Use the attack model against the real aggregate.



Ph.D. defense - 2023-07-11

Datasets analysis

The SubSum attack

The STATS attack

Conclusion

29/39

Experiments

Goal:

- Find the threshold (aggregate size) such as aggregates are no longer vulnerable.
- What makes a series vulnerable?
- Vulnerable: accuracy > 0.6.

Experimental setup:

- Experiments: exploring the parameters space (aggregate size, series length, group, and profile).
- Data: Enedis (June 2021 and June 2022).
- Classifier: MiniRocket¹.

Ph.D. defense - 2023-07-11

¹Angus Dempster, Daniel F Schmidt, and Geoffrey I Webb. "Minirocket: A very fast (almost) deterministic transform for time series classification". In: ACM SIGKDD. 2021.

Datasets analysis

The SubSum attack

The STATS attack

Conclusion

30/39

Target choice

• Score: standard deviation.

- Captures the impact of individual series on the aggregate (and on the classification).
- Groups (G): splitting the score distribution.
 - Forcing the sampling of outliers.
 - Sampling 50 targets per group and profile.

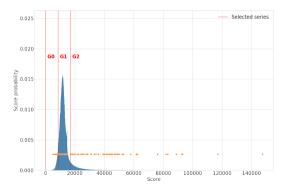


Figure: Scores distribution ENEDIS RES1.

・ロット (雪) (日) (日)

э

Datasets analysis

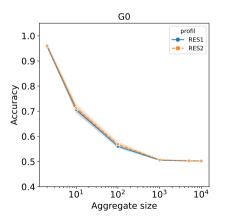
The SubSum attack

The STATS attack

Conclusion

Attack results: G0, train / test in June 2021

- Figure: attack accuracy per group, profile and aggregate size.
 - Training and testing in June 2021.
 - RES1: basic pricing, RES2: dynamic pricing.
- Larger aggregates lead to lower accuracy.



< ロ > < 同 > < 回 > < 回 >

э

31/39

Datasets analysis

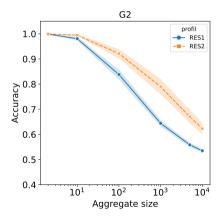
The SubSum attack

The STATS attack

Conclusion

Attack results: G2, train / test in June 2021

- Figure: average attack accuracy per group, profile and aggregate size.
 - Training and testing in June 2021.
 - RES1: basic pricing, RES2: dynamic pricing.
- Atypical series (group G2) are vulnerable.
 - Aggregated of 5000 series: accuracy > 0.65.
 - Approx. 60k (2%) series are vulnerable.



(D) (A) (A) (A) (A)

ъ

Ph.D. defense - 2023-07-11

32/39

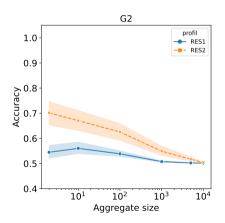
The SubSum attack

The STATS attack

Conclusion

Attack results: G2, training on historical data

- Figure: **attacker accuracy** per group, profile, and aggregate size.
 - Training in June 2021, testing in June 2022.
- Lower accuracy due to the historical data.
 - The **series changes** over time (due to temperature and human behavior).
 - Small aggregates remain vulnerable.
 - Still approx. 10k series (0.05%) are vulnerable against 5000 aggregated series.



< ロ > < 同 > < 回 > < 回 >

ъ

33/39

Datasets analysis

The SubSum attack

The STATS attack

Conclusion

34/39

The STATS attack: conclusion

- The STATS attack is a time series classification problem.
- Minimal requirements: target series, similar series.
- Is the legal threshold safe?
 - The legal threshold is vulnerable.
 - At least against the most atypical series.
- Publication: Communication of the ACM. (CACM, under review).

イロト イボト イヨト イヨト

э.

The SubSum attack

The STATS attack

Conclusion •0000 35/39

Conclusion: contributions

Data analysis and uniqueness study.

- High uniqueness rate for individual series.
- The publication of pseudonymized time series is risky.
- Publication: Nature Scientific Report (under review).
- 2 The SubSum attack.
 - Identify all members of the aggregate when requirements are met.
 - Requires to know, at least, all the aggregate members.
 - Publication: BDA 2021, SECRYPT 2022.
- The STATS attack.
 - Time series classification problem.
 - Identify the presence of outliers in large aggregates (above the legal threshold).
 - Publication: Communication of the ACM (under review).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ж.

Datasets analysis

The SubSum attack

The STATS attack

Conclusion

36/39

Conclusion

- Is the current threshold (5000 series) safe?
 - No: the STATS attack.
 - Only the most atypical series are at risk.
 - For most individuals the threshold may be reduced.
- What makes a series vulnerable?
 - Uniqueness: high uniqueness rate for individual series.
 - Atypical series relative to the population.

Antonin Voyez

Ph.D. defense - 2023-07-11

イロト イボト イヨト イヨト

3

Datasets analysis

The SubSum attack

The STATS attack

Conclusion

37/39

Future work: extension

Current contributions:

- Attack unprotected aggregates.
- Access to full series.

Background knowledge:

- Missing values.
- Approximate values.

Protection methods:

- Differential privacy¹.
- Synthetic series (GAN)².

¹Vibhor Rastogi and Suman Nath. "Differentially Private Aggregation of Distributed Time-Series with Transformation and Encryption". In: ACM SIGMOD International Conference on Management of Data. 2010.

Antonin Voyez

Ph.D. defense - 2023-07-11

Datasets analysis

The SubSum attack

The STATS attack

Conclusion 000●0 38/39

Future work: attributes inference

Current contributions

• Membership inference attack.

Properties inference:

- Non-Intrusive Load Monitoring (NILM).
- Extract events (e.g., devices used) from electricity consumption time series.
- Few existing works on coarse (half-hourly) time series¹.
 - Home presence? Unemployment? Large devices (EV)?
- Can we extract individual or group properties from series? From aggregates?

¹Pascal A. Schirmer and Iosif Mporas. "Non-Intrusive Load Monitoring: A Review". In: IEEE Transactions@n Smart Grid €2023) 🗧 🔗 < (>

Datasets analysis

The SubSum attack

The STATS attack

Conclusion 0000● 39/39

Thank you

Data analysis and uniqueness study.

- High uniqueness rate for individual series.
- The publication of pseudonymized time series is risky.
- Publication: Nature Scientific Report. 2022 (under review).
- 2 The SubSum attack.
 - Identify all members of the aggregate when requirements are met.
 - Requires to know, at least, all the aggregate members.
 - Publication: SECRYPT 2022.
- The STATS attack.
 - Time series classification problem.
 - Identify the presence of outliers in large aggregates (above the legal threshold).
 - Publication: Communication of the ACM. (under review).

(日)

3