
Large-scale reproducible
experiments

Antonin Voyez1, 2, 3,

1Univ Rennes, CNRS, IRISA, France 2ENEDIS, France 3Inria, IRISA, France



Problem Problem Architectures Implementation Technical details 2/21

Summary

1 Problem
2 Problem
3 Architectures
4 Implementation
5 Technical details

Figure: https://xkcd.com/1319/

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 3/21

The objective

Experiment task:
Train a classifier.
Run an optimization solver.

Explore multiple parameters:
Datasets (+ transformations).
Classifiers (+ hyperparameters).

Analyze the results
Fast:

Performing multiple experiments campaigns before the end
of the Ph.D.

Reproducible:
Deterministic: Same parameters = same results.
Easy to share the code and the experiments.
Should be executable in the future (10 years).

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 4/21

Concretely

Task: Train a time series classifier
20 classifiers and hyperparameters (testing)
4 classifiers (production)

Datasets:
Small ones (4500 series, 17000 timestamps, approx. 2.7 Gb)
Big one (3M series, 34000 timestamps, approx. 3.6 Tb)

Parameters:
3 layers, 1 to 100 parameters each.

Total:
Approx. 1800 experiments per campaign.
4 main campaigns.

https://gitlab.inria.fr/avoyez1/mia_stats

Antonin Voyez Tahiti - 2023-06-09

https://gitlab.inria.fr/avoyez1/mia_stats


Problem Problem Architectures Implementation Technical details 5/21

Available resources

One computer:
PC (low computational power).
Server (high computational power).

Computation grid:
Multiple computers sharing a common file system.
Various computational power and systems within the grid.
IGRIDA / Grid 5000 / OAR.
Distributed task workers (Ray).

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 6/21

Naive solution: pipeline

Pipeline: a set of stages (operations on the data).
Perform each pipeline stage for each combination of pa-
rameters.

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 7/21

Naive solution: problems

Perform the same task multiple times.
Bottlenecks (here: loading the data & performing the ex-
periment).

Computation / IO (disk).

More than a day per pipeline = problems
Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 8/21

Tree based solution

Represented as a tree (set
of directories).
Each parameter is com-
puted once.
Requires to store interme-
diate values.

Extra RAM or disk us-
age.

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 9/21

Implementation

Experiments descriptor
Stage
Orchestration
Analyzing the results

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 10/21

Building the tree: descriptor

File describing the experi-
ment campaign.
Parameters to test.
Build the experiment tree.
Reproducibility: from this
file, everything is determin-
istic.

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 11/21

Stage program

Each stage is a separate program
(Python).
Each stage takes as input a parameter
file and outputs a result file.
Deterministic
Normalized:

Parameters: ./params.yml
Data: ../out
Result: ./out

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 12/21

Orchestration

Using Makefiles (Linux Native, Parallelizable)
Each node has its own Makefile building the node, starting
from the leaves.
A root Makefile pilot the nodes Makefiles

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 13/21

Stage Makefile

The Makefile performs the
stage action if the output
file does not exist.
If the node requirements
are not found, execute the
top-level Makefile.

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 14/21

The root Makefile

User interface to pilot the exper-
iments.
Reference all the leaves and
stage’s nodes as targets.
Perform cleanup operations.

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 15/21

Results analysis

Jupyter
Interactive Python web-platform

Matplotlib / Seaborn
Graph generating libraries.
Can save figures in .pdf format (vectorized image)

Script to fetch and merge all individual CSV in one:

find ./tree -type f -name '*.csv' -exec cat {} \; > res.csv

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 16/21

Reproductibility

Seed:
Fixing the random number
generator (RNG) state.
The RNG will become
deterministic produce the
same sequence of "ran-
dom" values each run.
The seed should be fixed
for each node.

Packaging:
Poetry

Python packaging tool
Keep trace of libraries ver-
sions
Deploy the package with
pip install
Able to define new linux
commands from the
source code

Docker / Singularity
Execution environment
Isolated from the system
(OS versions)

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 17/21

Parallelism: within a program

Modin
Pandas-like (only change
the import)
Parallelize pandas opera-
tions
Able to distribute compu-
tation on a cluster

Joblib
Parallelize for loops

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 18/21

Parallelism: multiple programs

Put all targets in a stack

Each worker:
Pull a target from the stack and exe-
cute it until the stack is empty.

Make
Make -J <ncore>: Execute <ncore>
targets in parallel.
Single computer (worker = 1 core)

OAR
Minionize: Python library to manage
the stack
Requires to extract the targets from the
root makefile to the array param file.

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 19/21

Data pre-processing is important

Data pre-processing
Transform the data (Shape, format, typing) to improve disk usage and
loading time.
Clean missing/invalid values.
Should be part of the experiment pipeline.

Example: Time series
"Classical" format: (individual ID, timestamp, value), CSV.
My format: Timestamp x Individual matrix, Parquet.
Sampling the database: full Enedis DB: 1.8 T (classical, 3M series, 2a)
x100 in disk usage and loading time (20 Go to 200 Mo).

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 20/21

Data formats

SQL:
Handle complex data structures.
Can store and query a large amount
of data.
Extracting large dataset can be slow
(pandas.read_sql).

CSV:
Heavy disk usage.
Slow to read/write.
Human readable.

Pickle
Can store anything Python (beware
of security issues).
Slow to read/write (faster than
CSV).

Parquet
Data stored as typed binary vectors.
Fasted tabular data format.
Lower disk usage

RAM files
/tmp, /dev/shm: The files are
stored in RAM
Same IO functions as files
Not persistent/shareable between
computers

Antonin Voyez Tahiti - 2023-06-09



Problem Problem Architectures Implementation Technical details 21/21

The end

Figure: https://xkcd.com/2054/

Antonin Voyez Tahiti - 2023-06-09


	Problem
	Problem
	Architectures
	Implementation
	Technical details

