Large-scale reproducible

experiments

Antonin Voyez' 2 3,

1Univ Rennes, CNRS, IRISA, France 2ENEDIS, France 3lInria, IRISA, France

ENEDIS "N & IRISA Lyoim

L'ELECTRICITE EN RESEAU

Problem Problem tectures Impleme
. 000 I

Summary

T SPEND A LOT OF TIME ON THIS TRSK.
T SHOULD LRITE A PROGRAM AUTOMATING IT™

Problem
Problem

(1]
o
a Architectures
(%]
(5)

Implementation
Technical details

REFINKING __ __ NOTMEFOR
=7~ ORGNAL TASK
ANYVIORE

TME

Figure: https://xkcd.com/1319/

Antonin Voyez Tahiti - 2023-06-09

Problem Problem Architectures
000 0oo

The objective

@ Experiment task:
e Train a classifier.
e Run an optimization solver.
@ Explore multiple parameters:
o Datasets (+ transformations).
o Classifiers (+ hyperparameters).
@ Analyze the results
o Fast:
o Performing multiple experiments campaigns before the end
of the Ph.D.
@ Reproducible:
e Deterministic: Same parameters = same results.
e Easy to share the code and the experiments.
o Should be executable in the future (10 years).

Antonin Voyez Tahiti - 2023-06-09

Problem Problem Architectures Impleme
o 00 000 C

Concretely

@ Task: Train a time series classifier

@ 20 classifiers and hyperparameters (testing)
@ 4 classifiers (production)

@ Datasets:

@ Small ones (4500 series, 17000 timestamps, approx. 2.7 Gb)
@ Big one (3M series, 34000 timestamps, approx. 3.6 Tb)

@ Parameters:

@ 3 layers, 1 to 100 parameters each.

o Total:

@ Approx. 1800 experiments per campaign.
@ 4 main campaigns.

@ https://gitlab.inria.fr/avoyezl/mia_stats

Antonin Voyez Tahiti - 2023-06-09

https://gitlab.inria.fr/avoyez1/mia_stats

Problem Problem Architectures ntation e ical details
o ooe 000 00 O 000000

Available resources

@ One computer:
(g e PC (low computational power).
a o Server (high computational power).
" e Computation grid:
Multiple computers sharing a common file system.

Various computational power and systems within the grid.
IGRIDA / Grid 5000 / OAR.
Distributed task workers (Ray).

Antonin Voyez Tahiti - 2023-06-09

Problem Architectures

@00

Naive solution: pipeline

Results

8

Database Transforms

8 — .

For each combination
of parameters

@ Pipeline: a set of stages (operations on the data).

@ Perform each pipeline stage for each combination of pa-
rameters.

Antonin Voyez Tahiti - 2023-06-09

Problem Problem Architectures Implementatic

oeo

Naive solution: problems

Database Transforms Results
B — & 8
Z 30m Z 5m Z 1s

For each combination
of parameters

@ Perform the same task multiple times.

@ Bottlenecks (here: loading the data & performing the ex-
periment).
o Computation / 10 (disk).

@ More than a day per pipeline = problems

Antonin Voyez Tahiti - 2023-06-09

Problem

Problem Architectures
000 ooe

Tree based solution

Database

S

Z 30m

For each
combination per
stage

Transforms

)

Z sm

Transforms

T

Antonin Voyez

Results

Results

Z 1s

Results

Z s

Results

Z 1s

details

@ Represented as a tree (set
of directories).

e Each parameter is com-
puted once.

@ Requires to store interme-
diate values.

e Extra RAM or disk us-
age.

Tahiti - 2023-06-09

Problem Problem tectures Implementation
o 000 ©000000

Implementation

e Experiments descriptor
e Stage
@ Orchestration

@ Analyzing the results

Antonin Voyez

Tahiti - 2023-06-09

Problem Problem Architectures Implementation
o] O0C [) 0e00000

Building the tree: descriptor

—— o File describing the experi-

path_data : Path of the train dataset file

train_data path = *../../data/30_issda.parquet” ment cam pa |gn A

remove_cols : Columns to remove to get a clean ready to use dataset
train_data_cols = ["d"]

Parameters to test.

agg_sizes : Aggregate sizes to test.
agg_sizes = [500]#, 10, 50, 100, 1000, 2000]

agg_types: Aggregate types to test. Possible values: ["sum”, "mean"]
agg_types = ["mean”]#, "sun’]

Build the experiment tree.

Reproducibility: from this
Train series subsets - . - .
s subsets = | file, everything is determin-

#(TtsSubseries(0, 2), TtsSubseries(e, 2)),

(TtsSubseries(6, 500), TtsSubseries(d, 560), TtsSubseries(0, 500)) .
] Istic.
Protection methods to test
protections = [

NoneProtect (),

1

Set of targets to attack (as

columns of targets datasets)
targets = ['1158']#, '2051', '2687°

1

Classifiers
classifiers = [
#RocketClassifier(num kernels=10 000, seed=seed),
#MiniRocketClassifier (nun_kernels=10 000, seed=seed),
LRClassifier(seed=seed),

Antonin Voyez

Problem Problem Architectures Implementation cal details

[e]e] lele]e]e)

Stage program

o Each stage is a separate program
Parameters Data (Pytho n) .

@ Each stage takes as input a parameter
file and outputs a result file.

@ Deterministic

! @ Normalized:

o Parameters: ./params.yml
o e Data: ../out

e Result: ./out

Antonin Voyez Tahiti - 2023-06-09

Problem Problem Architectures Implementation - ical details
o 000 000 0000000

Orchestration

Root Make Make Make
Makefile | I

Database Transforms Results

8 — & S

@ Using Makefiles (Linux Native, Parallelizable)

@ Each node has its own Makefile building the node, starting
from the leaves.

@ A root Makefile pilot the nodes Makefiles

Antonin Voyez Tahiti - 2023-06-09

Problem Problem Architectures Implementation ical details
o] [[e]e]e]e] Tele]

Stage Makefile

out. i gigigz;yz!}eu/out-npz ") The Makefile performs the

if mkdir data.lock 2>/dev/null; \ omic M M

e oo stage action if the output
trap "rm -rf data.lock" 3; \ . .
e Lo e s B ™ file does not exist.

else \
:h“e :e?eéﬁ VN ererion o If the node requirements
jone;

RN are not found, execute the

top-level Makefile.

/out.npz:
@if test -f $@; then :; else \ ¢ Requirements not
$(MAKE) -C .. ; \ found: build top level
fi;

Antonin Voyez

Problem Problem Architectures Implementation S ical details
o] [O 00000e0 O

The root Makefile

all: mia @ User interface to pilot the exper-
mia: tree/mean/tts/LR/out.csv iments.
tree/mean/tts/LR/out.csv:

S(NAKE) -C tree/mean/tts/LR o Reference all the leaves and
tts: tree/mean/tts/out.npz stage,s nodes as targets

tree/mean/tts/out.npz:
$(MAKE) -C tree/mean/tts -
@ Perform cleanup operations.
agg: tree/mean/out.npz
tree/mean/out.npz
$(MAKE) -C tree/mean

cleanall: cleanlock cleandata cleanres

cleanres:

find . -name '*.csv' -delete;
cleandata:

find . -name '¥*.npz' -delete;
cleanlock:

find . -name '*data.lock' -delete;

Antonin Voyez

Problem Problem Architectures Implementation cal details
o 000 000 000000e 5

Results analysis

e Jupyter
o Interactive Python web-platform
e Matplotlib / Seaborn

o Graph generating libraries.
e Can save figures in .pdf format (vectorized image)

@ Script to fetch and merge all individual CSV in one:

find ./tree -type f -name 'x.csv' -exec cat {} \; > res.csv

Antonin Voyez Tahiti - 2023-06-09

Problem Problem Architectures atic Technical details
o foYe ©00000

Reproductibility

Seed: Packaging:
e Fixing the random number o Poetry
generator (RNG) state. e Python packaging tool
. Keep t f librari -
@ The RNG will become ° sisiz race ot libranes ver
deterministic produce the o Deploy the package with
same sequence of "ran- pip install
dom" values each run. o Able to define new linux

commands from the
source code

@ The seed should be fixed

for each node. e Docker / Singularity

o Execution environment
o lsolated from the system

(OS versions)

Antonin Voyez Tahiti - 2023-06-09

Problem e / ectures e Technical details
o] [e [e [o] lelele]e]

Parallelism: within a program

e Modin
!) @ Pandas-like (only change

(Dataset | the import)
T @ Parallelize pandas opera-
v v v tions
[/Luad chunck 1\:| | <ncores> | | Load chunck n\:l @ Able to distribute compu-

tation on a cluster

v
. e Joblib

\. Transform | .
/ @ Parallelize for loops

o=

Antonin Voyez Tahiti - 2023-06-09

Problem

Problem Architectures

ntation Technical details
[e]e] lele]e]

Parallelism: multiple programs

-

\: Put targets in stack \

P

I ™
| Spawn workers |

L

emp!

“
| Worker1 | | Workern |

Targets in stack Targets in stack

pick first pick first

emp!

e ™ s ™
| Execute target | | Execute target |

®

Antonin Voyez

@ Put all targets in a stack

@ Each worker:

@ Pull a target from the stack and exe-
cute it until the stack is empty.

@ Make

@ Make -J <ncore>: Execute <ncore>
targets in parallel.
@ Single computer (worker = 1 core)

@ OAR

@ Minionize: Python library to manage
the stack

@ Requires to extract the targets from the
root makefile to the array param file.

2023-06-09

Problem Probl

em Architectures Impleme Technical details
[e]e]e} [[e]e]e] le]e]

Data pre-processing is important

e Dat

o Exa
[+

a pre—processing
Transform the data (Shape, format, typing) to improve disk usage and
loading time.
Clean missing/invalid values.
Should be part of the experiment pipeline.

mple: Time series
"Classical" format: (individual ID, timestamp, value), CSV.
My format: Timestamp x Individual matrix, Parquet.
Sampling the database: full Enedis DB: 1.8 T (classical, 3M series, 2a)
x100 in disk usage and loading time (20 Go to 200 Mo).

Antonin Voyez Tahiti - 2023-06-09

Problem Problem Architectures Imp ntation Technical details
o] [) 0000e0

Data formats

@ SQL: @ Parquet

@ Handle complex data structures. @ Data stored as typed binary vectors.
@ Can store and query a large amount @ Fasted tabular data format.
of data. @ Lower disk usage
@ Extracting large dataset can be slow
(pandas.read sql). .
- @ RAM files
@ CSV: @ /tmp, /dev/shm: The files are
stored in RAM
@ Heavy disk usage. @ Same 10 functions as files
@ Slow to read/write. @ Not persistent/shareable between
@ Human readable. computers
@ Pickle

@ Can store anything Python (beware
of security issues).

@ Slow to read/write (faster than
Csv).

Antonin Voyez

Problem

Problem

The end

Architectures

CHECK ITOUT—T MADE A | | 15 IT A GIANT HOUSE OF CARDS
FULLY AUTOMATED DATA | | BUILT FROM RANDOHM SCRIPTS
PIPEUNE THAT COLLECTS | | THAT LILL ALL COMPLETELY

AND PROCESSES ALL THE | | COLLAPSE THE MOMENT ANY
INFORMATION WE NEED. INPUT DOES ANYTHING WEIRD?

L9

i

Technical details
O0000e

IT... MGHT” NOT GE.
| = cvess ars sovem-

\JHOOPS, JusT
COLLAPSED. HANG
ON I CAN PATCH IT.

FH

Figure: https://xkcd.com/2054/

Antonin Voyez

Tahiti - 2023-06-09

	Problem
	Problem
	Architectures
	Implementation
	Technical details

