Membership Inference Attacks on Aggregated Time Series with Linear Programming

Antonin Voyez^{1, 3}, Tristan Allard¹, Gildas Avoine^{1, 2}, Pierre Cauchois³, Élisa Fromont^{1, 4, 5}. Matthieu Simonin⁴

¹Univ Rennes, CNRS, IRISA, France ²INSA Rennes, CNRS, IRISA, France ³ENEDIS, France ⁴Inria, IRISA, France ⁵IUF (Institut Universitaire de France), France

Context

Publication context

- Smart meters are devices used to collect fine grained electricity consumption data.
 - France: 34M meters, USA: 100M meters, ...
- European legislations¹ strongly encourage the collection and publication of energy consumption time series.
 - Ecological transition (thermal renovation)

Publication methods

- State of the art protection methods (differential privacy) are not always used in real life.
 - Differential privacy is hard to apply to unbounded time series.
 - Ex: Threshold-based aggregation (sum / average of several meters per timestamp) in France.

¹Directive 2006/32/EC of the European Parliament and of the Council of 5 April 2006 on energy end-use efficiency and energy services and repealing Council Directive 93/76/EEC. Apr. 27, 2006.

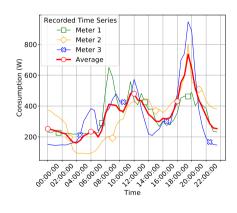
What is sensitive about electric consumption time series?

What is sensitive about a time series?

- Contract type, Devices used
- Socio-economic information²(Home presence, Housing space, Number of people at home, Living standards, ...)

What is sensitive about aggregates?

- Extract sensitive attributes from the aggregate.
- Infer the participation of series to the aggregate.
- Knowing that a target is within a series allow to gain the information published alongside the aggregate.



²Beckel & al. "Automatic socio-economic classification of households using electricity consumption data". In: Proceedings of the fourth international conference on Future energy systems, 2013,

State of the art

- Reconstruction attacks³:
 - Find the raw data at the origin of the anonymised data.
 - Requires to build custom queries to build the constraints.
- Membership inference attacks^{4,5}:
 - Is a target inside an aggregate?
 - Limited to identify the presence of a single series per attack.
- Attributes inference⁶:
 - Can we detect a sensitive attribute (being at home) from the aggregate ?
 - NILM : Non Intrusive Load Monitoring
 - Only for individual series and not aggregates.

³Cynthia Dwork & al. "The price of privacy and the limits of LP decoding". In: ACM Symposium on Theory of Computing. 2007.

⁴Apostolos Pyrgelis & al. "Knock Knock, Who's There? Membership Inference on Aggregate Location Data". In: NDSS. 2018.

⁵Luke A. Bauer & al. "Towards Realistic Membership Inferences: The Case of Survey Data". In: ACSAC. 2020.

⁶G.W. Hart. "Nonintrusive appliance load monitoring". In: *Proceedings of the IEEE* (1992).

Problem statement

Objective:

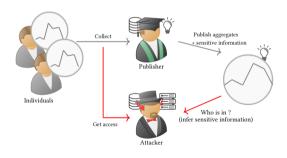
Find the series present in the aggregate to infer information (the sensitive data published alongside the aggregate).

Published data:

- An aggregate (sum of series)
- Metadata about the aggregate: number of series
- Sensitive data published alongside the aggregate (contract type, devices used, ...)

Attacker knowledge:

- Superset of the series present in the aggregate.
- In real life: available to a major provider, disclosed by a data breach.



Is it realistic?

Get access to the data

- Legal access:
 - Actors (other than the publisher) have access to the series of their clients.
- Illegal access:
 - The raw series leaks to the attacker. (1,862 data breach in 2021⁷)
- An actor can have all the series of the publication.
- Hard to get, yet not impossible.

Raw time series are not knowledge!

Extract knowledge from raw series requires specific algorithm and labeled ground truth data.

⁷https://iapp.org/news/a/record-number-of-data-breaches-in-2021/.

The SubSum attack

Constraints:

- $\forall t \in \mathcal{T}, A_t = \sum_{\forall i \in S} S_{i,t} \cdot X_i$
- $\mathcal{S}^{\mathcal{A}} = \sum X_i$
- A_t : Aggregate value at the timestamp t. $S_{i,t}$: Consumption of the individual i at the timestamp t. X_i : Boolean telling whether or not the individual i is in the aggregate. Aggregate size $|S^A|$

Intuition:

- One constraint per timestamp.
- Each constraint gives a different set of solutions.
 - Solution: Set of individuals whose sum gives the aggregate A_t .
- The true solution is at the intersection of each constraints solutions.
- Ideally, only one solution is found: the real set of series at the origin of the aggregate.

The SubSum attack

	T1	T 2	Т3	T 4
Series 1	1	2	3	1
Series 2	4	3	5	5
Series 3	4	3	4	3
Series 4	3	2	2	4
Series 5	1	3	5	6
Series 6	5	1	4	2
Aggregate	5	5	7	4
(1 + 3)				
Aggregate (1 + 3)	5	5	7	4

Figure: SubSum example

The SubSum attack: experiments

Goal:

- What are the conditions required to make our attack work?
- How long does it take?

Experimental setup:

- Success: Find **all** the existing solutions in the impaired time (time budget: θ).
- Experiments: exploring the parameters space (number of series |S|, aggregate size $|S^{A}|$, number of constraints |A|)
- Data: 4500 series (to the W) at 1/2h step over 1,5 years.
 - CER ISSDA⁸ & London Households Energy Consumption dataset⁹
- Solver: Gurobi, Computing configuration: 2 cores, 8Gb of RAM.

⁷https://www.ucd.ie/issda/data/commissionforenergyregulationcer/

⁹https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households

Minimal number of constraints to get at least a success

Symmetrical results for aggregate sizes above 50% of the total population.

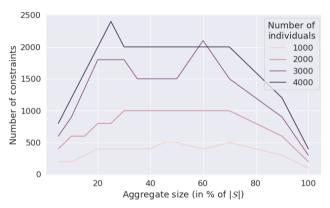


Figure: Y axis: absolute number of constraints. Parameters: Dataset = ISSDA-30m, $|\mathcal{S}| = \{1000, 2000, 3000, 4000\}, \theta = 24h, p = 2, 20 repetitions$

Minimal number of constraints to get at least a success

The number of constraints required for a successful attack is of the same order as aggregate size attacked.

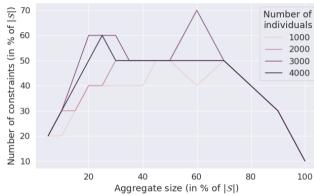


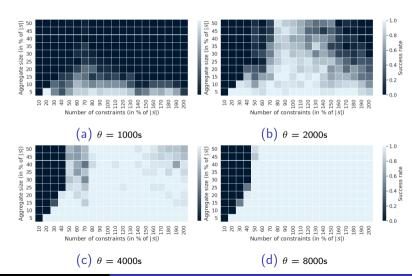
Figure: Y axis: number of constraints in % of the number of individuals. Parameters: Dataset = ISSDA-30m, |S| = {1000, 2000, 3000, 4000}, θ =24h, p=2, 20 repetitions.

Success depending on the time budget

Higher wall time leads to more success (Except when the number of constraints is too low or too high).

Parameters : dataset = ISSDA-30m,

|S| = 2000, $\theta = \{1000s, 2000s, 4000s, 8000s\}$, p = 2, 20 repetitions.



Experimentation time depending on the time budget

- When the number of constraints is too low:
 - Attack fails due to wall time hit
- When the wall time is too high.
 - The attack should be a success but the time increases linearly with the number of constraints.

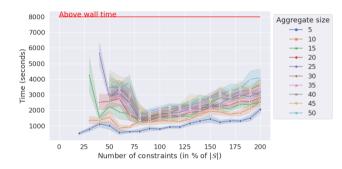


Figure: Parameters : dataset = ISSDA-30m, |S| = 2000, $\theta = 8000$ s, p = 2, 20 repetitions.

Success for larger datasets

- We are able to attack the whole population available (4500 series).
- Results similar to those obtained with smaller datasets.

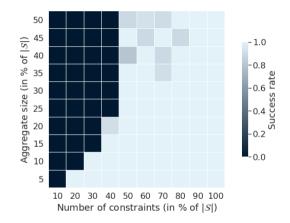


Figure: Parameters: $|\mathcal{S}|=$ 4500, $\theta=$ 24h, p= 100, 20 repetitions.

Number of solutions found

- Exact solution found in almost all runs (98%).
- For the worst-case run, the set of solutions contained three solutions...But:
 - The three solutions only differ on a single time series.
 - Membership inference for all time series except one.

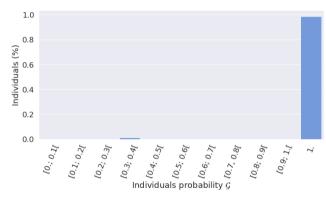


Figure: Parameters: dataset = ISSDA-30m, |S| = 4500, $\theta = 24h$, p = 100, $|S^A| = 225$ (5%), |A| = 900(20%).

Key Takeaways

- Electricity consumption time series.
 - Sensitive data.
 - Published in open data as aggregates (sum / average).
- The SubSum attack:
 - A subset-sum based attack on aggregated time series.
 - Successful attack when the requirements are met.
 - Able to attack aggregates of 2000 series with a month of data in less than 24h.
- Future works:
 - Try the attack on other kind of series.
 - Reduce background knowledge.
 - Cope with noisy aggregates.